微信号:bigdatalab

介绍:宽客俱乐部旗下美国大数据实验室,大数据研究应用.

欧拉等式之美

2016-01-07 08:53 大数据实验室

通常,当阅读一本不错的数学书时,作者将一个特别复杂的证明、定理或想法解释得很透彻,并提到数学所涉及到的“美”。我一直想知道,这究竟意味着什么。我错过了一个特别利落的示意图吗?难道那些被深藏不露的数学美真的需要拿一个博士学位才能欣赏?


我曾认为后者在起作用------也许有一天,经过多年最高水平数学的学习,我突然窥见到一些不可思议的深刻真理,并从看起来枯燥琐碎的公式里体验到那令人难以置信的美。



数学就像浓密的丛林——很难去参透。


但实际上,我认为你不必花太多的精力就可以一瞥数学家关于美的深层含义。这就是下文我所要试图说服你的。数学有点像一个密集的、永无止境的丛林,可以让你觉得不时会远离它,很难到达你想去的地方。但如果你停下来看看四周,你经常会看到令人难以置信的、充满异国情调的植物和动物。


下面我试图介绍我认为很美丽的一件特别事情,这是我在一个电视节目中看到的。当时我几乎不知道是什么意思,当然也不知道它是怎么来的,但我有兴趣去了解更多的信息。

我说的是欧拉等式




现在你可能认为我疯了。它有什么美?那么,我应该提醒你,不只是我------《数学信使》读者的投票把它选为“数学中最美丽的定理”。物理学家理查德·费恩曼认为该公式“是所有数学中最卓越的、最惊人的公式之一”。


但是,它到底有什么特别之处呢?首先,我应该解释符号的真正含义是什么。


你可能很熟悉,它是圆的周长与直径之比。数也是一个常数,你可能不是很熟悉它,它是自然对数之底。e的前20位小数为=2.71828182845904523536。均是无理数------它们有无限多个小数位,你不能把它们写成一个整数除以另一个整数。


这三个数中可能最奇特的是。它是−1的平方根,即,称为虚数。你不能在通常数轴的任何地方找到它,因为没有实数的平方为负数。



欧拉是最伟大且最多产的数学家之一。


你开始得到欧拉等式之美的念头吗?如果你把常数乘上的次方,然后拿走1,你会得到0。三个非常奇怪的数字,它们没有任何明显的方式联系在一起,一结合却给出这样一个普通而熟悉的结果,是不是有点古怪?


那么,为什么会出现这种情况呢?最奇怪的问题是:我们怎样取一个数的次方?但实际上,得到欧拉等式并不困难,这也是它美妙的一个方面!但首先你必须看看导出这个美丽等式的一般的欧拉公式:



这个看上去也一样整洁漂亮,不是吗?但是,要理解这个公式是如何来的,我们需要一样东西,叫做泰勒级数。确有一种方法能将像这样的函数表达为无穷和的形式。他们由数学家布鲁克·泰勒发现(他也是裁定牛顿和莱布尼兹是谁先发明微积分的委员会成员)。


函数的泰勒级数是



其中(读做n的阶乘)表示乘积



你可以用计算器来验证这个泰勒级数:选取一个数,看看计算器给什么样的值。再然后使用计算器算出和



的值,如果n比较大的话,你会发现结果几乎等于你得到的数,且添加的求和项数越多,两个结果越靠近。在某些时候,计算器上的两个结果是一样的,因为计算器无法检测它们之间的微小区别。当你对无穷多项求和时,两个结果是一模一样的。


出现在欧拉公式的其他两个函数的泰勒级数为



同样,你可以用计算器检验,请记住角度是用弧度,而不是度数。


现在,让我们将泰勒级数中的变量换成,得到



但是,某些的次方可以简化,例如,由定义,所以,等等。因此,上式可简化为



我们可以将涉及i的项合并在一起,给出



注意到这两个级数与上面的的对应级数一样,所以我们将它们代入而得到




这就是欧拉公式。


我们现在要做的是让。由于,我们得到







所以你看,在一系列不算太复杂的数学运算后,我们回到了我们开始的地方:欧拉等式。我认为这个等式很美:它将非常奇怪的数与很基本的数联系在一起。理解了为什么工作,感觉上有点像通过数学丛林,踩在一条鲜为人知的路径上,到达厚厚灌木丛中的某个秘密目的地。


作 者:Surein Aziz

翻 译:丁玖,密执安州立大学博士, 南密西西比大学数学教授

来源:善科文库







招聘启事


某投资公司因拓展业务需要,现招聘以下人员,欢迎发送简历至邮箱,简历中请注明应聘职位名称、期望薪金。

1.量化投资经理

2.新三板项目经理
3.金融行业人力资源顾问
4.网站微信编辑(财经/金融/投资)
5.活动策划与执行专员


工作地点:上海浦东

简历发送邮箱:5424567@qq.com


招聘详情请点击下面”阅读原文“


 
大数据实验室 更多文章 用户画像数据建模方法 李光斗:警方是如何利用大数据抓到王全安的 降楼价,新加坡居然靠的是无人驾驶! 小数法则和经验主义 什么性格的人适合 Quant 这个职位?能否描述一下 Quant 一天的生活是怎样的?
猜您喜欢 软件自动化测试(6)- 管理测试脚本 详解Python的Django框架中inclusion_tag的使用 HTTPS科普扫盲帖 为RecyclerView打造通用Adapter 让RecyclerView更加好用 HTTPS 升级指南