微信号:bigdatalab

介绍:宽客俱乐部旗下美国大数据实验室,大数据研究应用.

你相信这些数学事实么?(上)

2016-06-26 07:21 大数据实验室

1、三门问题(蒙提霍尔问题)


假如你正在参加一个节目。主持人给了你三扇门,其中一扇门里面是一款崭新的汽车,另外两扇门里面都是一只羊。你选择了其中一扇,然后,主持人打开你未选的另外两扇门里是羊的那一扇,然后——




主持人问你:你是否要换一扇门?还是就要你刚才选的那一扇?


你会怎么做?


你第一反应一定是就要你刚才选的那一扇。


到目前为止,一切都没有问题,对吧?


因为现在只有两扇门了,你可以推断出,有一半的机会赢得那辆车。对吗?




你错了??


这个游戏的最佳策略就是“换门”,每次都换。


如果你每次都换,只有当你第一次选的那扇门里就是车的时候你才会输。


因为你第一次选中车的几率是1/3,而每次都换你输掉的几率也是1/3。


这就意味着,如果你每次都换的话,赢得几率就有2/3。


换门赢的几率是不换门赢的几率的两倍。


还不信吗?这么说吧,假如你选的是一号门,请看下面所有可能发生的情况:




如果你不换门,三种情况只有一种情况能赢;如果换门,就有两种情况能赢。


你还不信?


那我们换成50扇门再做一遍。你不选一号门。




我把其他是羊的48扇门都亮给你。对你的选择还那么有信心吗?别忘了:你第一次选对的机会只有1/50。道理完全是一样的。



2、0.999...=1

无限循环小数0.999...等于1。


有许多的证法都可以证明这个等式,但仍然有很多的人纠结这个概念,下面就是一个很好的正面:


x=0.999...

10x=9.999...

10x-x=9.999...-0.999...

9x=9

x=1


很多人纠结这个理念的原因,是我们人类的思维很难去理解“无限”这个概念。在某种层面上,大多数人只是想象最终总会以一个“9”结束。


数字这东西总是换种方式表达就会看起来不大一样,当然这个也不例外。


这其中的原因是和“无限”与“有限”的概念紧密关联的,光这些就够我们大伤脑筋的了。


下面是另外一种证法:


1/3=0.333...

3×1/3=3×0.333...

1=0.999...


3、偶数和自然数一样多


偶数和自然数一样多。


表示事物个数的数叫做自然数,如1,2,3,4等等。


自然数的数量是无限的。偶数的数量也是无限的。


你或许会想象自然数要比偶数多,因为自然数由奇数和偶数组成。


那你就错了。


我们可以在自然数和偶数之间建立一个一对一的对应关联式,这个关联式将告诉你,每个自然数都有一个与其对应的偶数。


我们可以这样想:每个自然数都有一个等于它两倍的偶数,而每个偶数也都有一个等于它一半的自然数:


1<---->2

2<---->4

3<---->6

4<---->8

5<---->10

6<---->12

7<---->14

8<---->16


这是什么意思呢?


就是说,每一个自然数,都有一个与之对应的偶数


这就是说,这两个无限集的大小是相等的,我们称之为“可数无限集”


这就将其与“不可数无限集”如“实数集”或“复数集

”区分开了。


例如,我们不能再自然数和实数之间建立一个一对一的对应关联式。


其他的可数无限集还包括:有理数集合奇数集。


4、本福特定律


在实际的数字中,数字“1”作为首位数字出现的几率是30%.


1938年,物理学家福兰克·本福特(Frank Benford)首次在一组数字中发现,首位数字是“1”的情况总是占大多数。


其他数字出现在首位的情况则呈如下对数分布:




这是一种普遍观察到的现象。


该分布图被用于侦测数据异常,包括:

--伊朗选举欺诈    

--经济数据造假      

--会计账务伪造


这种现象也可以在以下集合中观察到:

--斐波那契数    

--(1,1,2,3,5,8,13,21,34...)

--阶乘                

--2的幂


5、生日悖论


我们假设你工作在一个23人的办公室。


那么,你办公室中两个人生日相同的几率是多少呢?(为使问题简化,我们排除2月29日)




答案是:两个人生日相同的几率是50%.


只要一个人群达到366人,那么从统计学的角度就可以确定 有两个人生日相同。因为只有365种可能的生日(排除2月29日)。


然而有趣的是,所有生日都是等概率分布的,只要一个人群有57人,那么两个人生日相同的机率就可以达到99%.


这是怎么推算出来的呢?


让我们再回到那个23人的办公室,来看一看是怎么回事。


我们要进行一下反概率运算,即计算一群人中没人生日相同的机率,来推算出我们想要的有生日相同的机率。


如果我们正面硬求解的话,要推算出办公室中两人生日相同的机率是很困难的。


而要计算出一群人中没人生日相同的机率则是非常非常容易的。


两个人生日不同的机率是这样算的:



三个人中没人生日相同的机率就是这样算的:




四个人中没人生日相同的机率是这样算的:




我们以此推算会得到什么结果呢?那就是,23个人中没人生日相同的机率是:




这时候就意味着,既然没人生日相同的机率是49.3%,那么至少有两人生日相同的机率就是50.7%.


下面就是概率(机率)曲线的样子:



交易所接口技术、编程攻略和实战策略特训营

   上课地点:上海

培训时间:2016年7月23-24日

咨询电话/微信:13061694649

6、会计/管道工问题


“上礼拜,我公寓跟冰窖似的,因为我的暖气坏了。”


“我就去找了个人,让他看一下暖气,他用了一堆备件就把它修好了。我就付了他维修费。“那这个人很可能是:会计?还是...会计及管道工?


答案是:这个人很可能是会计。


因为从场景中,这个人可能是管道工,所以你就直觉第认为他是管道工。


但是,一个人是“会计及管道工”,那他也还是会计。


参照下面的图想一想:




严格地讲,相对于管道工,他更可能是会计。因为:


而他是“会计”的概率里面还包含着他只是“会计而不是管道工”的概率B.




严格地讲,相对于管道工,他更可能是会计。因为:


A代表给我修暖气的那个人是“会计及管道工”的概率。


A+B的和代表给我修暖气的是“会计”的概率。



严格地讲,相对于管道工,他更可能是会计。因为:


A≤A+B,从概率学的角度讲,给我修暖气的人更可能是会计。




(未完待续)


来源:世界奥林匹克数学竞赛(中国区)选拔赛组委会


版权声明:「大数据实验室」致力于优秀文章的交流与分享。部分文章推送时未能及时与原作者取得联系。若涉及版权问题,敬请原作者添加5424567微信联系删除。谢谢!




金融产品设计培训班,招生正式启动!

  • 金融产品体系

  • 客户需求与产品设计

  • 案例分析

在产品设计讲解中,我们通过产品各参与方法的视角与需求,全面掌握产品设计的要领。并深刻理解产品创新的两个源动力满足客户需要与规避监管的意义。

2016年7月9--10日    北京    


咨询电话/微信:13061694649


 
大数据实验室 更多文章 用户画像数据建模方法 李光斗:警方是如何利用大数据抓到王全安的 降楼价,新加坡居然靠的是无人驾驶! 小数法则和经验主义 什么性格的人适合 Quant 这个职位?能否描述一下 Quant 一天的生活是怎样的?
猜您喜欢 戏说Linux内核引用计数kref使用 程序员进阶必看,Java进阶书籍推荐! 大数据下的个人隐私(你以为你没暴露自己?) 一张图帮你决定要不要辞职 简析 Swift 的模块系统