微信号:yunqiinsight

介绍:云栖社区是由阿里云负责运营、阿里巴巴技术协会和阿里巴巴集团各技术团队提供内容支持的开放式技术社区.

28款GitHub最流行的开源机器学习项目(一)

2016-04-21 12:27 刘崇鑫

现在机器学习逐渐成为行业热门,经过二十几年的发展,机器学习目前也有了十分广泛的应用,如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、DNA序列测序、语音和手写识别、战略游戏和机器人等方面。译者特整理了目前GitHub上最受欢迎的28款开源的机器学习项目,以供开发者参考使用。


1. TensorFlow


TensorFlow 是谷歌发布的第二代机器学习系统。据谷歌宣称,在部分基准测试中,TensorFlow的处理速度比第一代的DistBelief加快了2倍之多。


具体的讲,TensorFlow是一个利用数据流图(Data Flow Graphs)进行数值计算的开源软件库:图中的节点( Nodes)代表数学运算操作,同时图中的边(Edges)表示节点之间相互流通的多维数组,即张量(Tensors)。这种灵活的架构可以让使用者在多样化的将计算部署在台式机、服务器或者移动设备的一个或多个CPU上,而且无需重写代码;同时任一基于梯度的机器学习算法均可够借鉴TensorFlow的自动分化(Auto-differentiation);此外通过灵活的Python接口,要在TensorFlow中表达想法也变得更为简单。


TensorFlow最初由Google Brain小组(该小组隶属于Google's Machine Intelligence研究机构)的研究员和工程师开发出来的,开发目的是用于进行机器学习和深度神经网络的研究。但该系统的通用性足以使其广泛用于其他计算领域。


目前Google 内部已在大量使用 AI 技术,包括 Google App 的语音识别、Gmail 的自动回复功能、Google Photos 的图片搜索等都在使用 TensorFlow 。


开发语言:C++

许可协议:Apache License 2.0 

GitHub项目地址:https://github.com/tensorflow/tensorflow


2. Scikit-Learn

Scikit-Learn是用于机器学习的Python 模块,它建立在SciPy之上。该项目由David Cournapeau 于2007年创立,当时项目名为Google Summer of Code,自此之后,众多志愿者都为此做出了贡献。


主要特点:

  • 操作简单、高效的数据挖掘和数据分析

  • 无访问限制,在任何情况下可重新使用

  • 建立在NumPy、SciPy 和 matplotlib基础上


Scikit-Learn的基本功能主要被分为六个部分:分类、回归、聚类、数据降维、模型选择、数据预处理,具体可以参考官方网站上的文档。经过测试,Scikit-Learn可在 Python 2.6、Python 2.7 和 Python 3.5上运行。除此之外,它也应该可在Python 3.3和Python 3.4上运行。


注:Scikit-Learn以前被称为Scikits.Learn。


开发语言:Python

许可协议:3-Clause BSD license

GitHub项目地址: https://github.com/scikit-learn/scikit-learn


3.Caffe

Caffe 是由神经网络中的表达式、速度、及模块化产生的深度学习框架。后来它通过伯克利视觉与学习中心((BVLC)和社区参与者的贡献,得以发展形成了以一个伯克利主导,然后加之Github和Caffe-users邮件所组成的一个比较松散和自由的社区。


Caffe是一个基于C++/CUDA架构框架,开发者能够利用它自由的组织网络,目前支持卷积神经网络和全连接神经网络(人工神经网络)。在Linux上,C++可以通过命令行来操作接口,对于MATLAB、Python也有专门的接口,运算上支持CPU和GPU直接无缝切换。


Caffe的特点

  • 易用性:Caffe的模型与相应优化都是以文本形式而非代码形式给出, Caffe给出了模型的定义、最优化设置以及预训练的权重,方便快速使用;

  • 速度快:能够运行最棒的模型与海量的数据;

  • Caffe可与cuDNN结合使用,可用于测试AlexNet模型,在K40上处理一张图片只需要1.17ms;

  • 模块化:便于扩展到新的任务和设置上;

  • 使用者可通过Caffe提供的各层类型来定义自己的模型;

目前Caffe应用实践主要有数据整理、设计网络结构、训练结果、基于现有训练模型,使用Caffe直接识别。


开发语言:C++

许可协议: BSD 2-Clause license

GitHub项目地址: https://github.com/BVLC/caffe


4. PredictionIO

PredictionIO 是面向开发人员和数据科学家的开源机器学习服务器。它支持事件采集、算法调度、评估,以及经由REST APIs的预测结果查询。使用者可以通过PredictionIO做一些预测,比如个性化推荐、发现内容等。PredictionIO 提供20个预设算法,开发者可以直接将它们运行于自己的数据上。几乎任何应用与PredictionIO集成都可以变得更“聪明”。


其主要特点如下所示:

  • 基于已有数据可预测用户行为;

  • 使用者可选择你自己的机器学习算法;

  • 无需担心可扩展性,扩展性好。


PredictionIO 基于 REST API(应用程序接口)标准,不过它还包含 Ruby、Python、Scala、Java 等编程语言的 SDK(软件开发工具包)。其开发语言是Scala语言,数据库方面使用的是MongoDB数据库,计算系统采用Hadoop系统架构。 


开发语言:Scala

许可协议: Apache License 2.0

GitHub项目地址: https://github.com/PredictionIO/PredictionIO


5. Brain

Brain是 JavaScript 中的 神经网络库。以下例子说明使用Brain来近似 XOR 功能:


当 brain 用于节点中,可使用npm安装:


当 brain 用于浏览器,下载最新的 brain.js 文件。训练计算代价比较昂贵,所以应该离线训练网络(或者在 Worker 上),并使用 toFunction() 或者 toJSON()选项,以便将预训练网络插入到网站中。


开发语言:JavaScript

GitHub项目地址: https://github.com/harthur/brain


6. Keras

Keras是极其精简并高度模块化的神经网络库,在TensorFlow 或 Theano 上都能够运行,是一个高度模块化的神经网络库,支持GPU和CPU运算。Keras可以说是Python版的Torch7,对于快速构建CNN模型非常方便,同时也包含了一些最新文献的算法,比如Batch Noramlize,文档教程也很全,在官网上作者都是直接给例子浅显易懂。Keras也支持保存训练好的参数,然后加载已经训练好的参数,进行继续训练。


Keras侧重于开发快速实验,用可能最少延迟实现从理念到结果的转变,即为做好一项研究的关键。


当需要如下要求的深度学习的库时,就可以考虑使用Keras:

  • 考虑到简单快速的原型法(通过总体模块性、精简性以及可扩展性);

  • 同时支持卷积网络和递归网络,以及两者之间的组合;

  • 支持任意连接方案(包括多输入多输出训练);

  • 可在CPU 和 GPU 上无缝运行。

Keras目前支持 Python 2.7-3.5。


开发语言:Python

GitHub项目地址:https://github.com/fchollet/keras


7. CNTK

CNTK(Computational Network Toolkit )是一个统一的深度学习工具包,该工具包通过一个有向图将神经网络描述为一系列计算步骤。在有向图中,叶节点表示输入值或网络参数,其他节点表示该节点输入之上的矩阵运算。


CNTK 使得实现和组合如前馈型神经网络DNN、卷积神经网络(CNN)和循环神经网络(RNNs/LSTMs)等流行模式变得非常容易。同时它实现了跨多GPU 和服务器自动分化和并行化的随机梯度下降(SGD,误差反向传播)学习。


下图将CNTK的处理速度(每秒处理的帧数)和其他四个知名的工具包做了比较了。配置采用的是四层全连接的神经网络(参见基准测试脚本)和一个大小是8192 的高效mini batch。在相同的硬件和相应的最新公共软件版本(2015.12.3前的版本)的基础上得到如下结果:


CNTK自2015年四月就已开源。


开发语言:C++

GitHub项目地址:https://github.com/Microsoft/CNTK


8. Convnetjs

ConvNetJS是利用Javascript实现的神经网络,同时还具有非常不错的基于浏览器的Demo。它最重要的用途是帮助深度学习初学者更快、更直观的理解算法。


它目前支持:

  • 常见的神经网络模块(全连接层,非线性);

  • 分类(SVM/ SOFTMAX)和回归(L2)的成本函数;

  • 指定和训练图像处理的卷积网络;

  • 基于Deep Q Learning的实验强化学习模型。


一些在线示例:

  • Convolutional Neural Network on MNIST digits

  • Convolutional Neural Network on CIFAR-10

  • Toy 2D data

  • Toy 1D regression

  • Training an Autoencoder on MNIST digits

  • Deep Q Learning Reinforcement Learning demo +Image Regression ("Painting") +Comparison of SGD/Adagrad/Adadelta on MNIST 开发语言:Javascript 许可协议:MIT License GitHub项目地址:https://github.com/karpathy/convnetjs


9. Pattern


Pattern是Python的一个Web挖掘模块。拥有以下工具:

  • 数据挖掘:网络服务(Google、Twitter、Wikipedia)、网络爬虫、HTML DOM解析;

  • 自然语言处理:词性标注工具(Part-Of-Speech Tagger)、N元搜索(n-gram search)、情感分析(sentiment analysis)、WordNet;

  • 机器学习:向量空间模型、聚类、分类(KNN、SVM、 Perceptron);

  • 网络分析:图形中心性和可视化。


其文档完善,目前拥有50多个案例和350多个单元测试。 Pattern目前只支持Python 2.5+(尚不支持Python 3),该模块除了在Pattern.vector模块中使用LSA外没有其他任何外部要求,因此只需安装 NumPy (仅在Mac OS X上默认安装)。


开发语言:Python

许可协议:BSD license

GitHub项目地址:https://github.com/clips/pattern


10. NuPIC


NuPIC是一个实现了HTM学习算法的机器智能平台。HTM是一个关于新(大脑)皮质(Neocortex)的详细人工智能算法。HTM的核心是基于时间的连续学习算法,该算法可以存储和调用时间和空间两种模式。NuPIC可以适用于解决各类问题,尤其是异常检测和流数据源预测方面。


NuPIC Binaries文件目前可用于:

  • Linux x86 64bit

  • OS X 10.9

  • OS X 10.10

  • Windows 64bit

NuPIC 有自己的独特之处。许多机器学习算法无法适应新模式,而NuPIC的运作接近于人脑,当模式变化的时候,它会忘掉旧模式,记忆新模式。


开发语言:Python

GitHub项目地址:https://github.com/numenta/nupic


11. Theano

Theano是一个Python库,它允许使用者有效地定义、优化和评估涉及多维数组的数学表达式,同时支持GPUs和高效符号分化操作。Theano具有以下特点:

  • 与NumPy紧密相关--在Theano的编译功能中使用了Numpy.ndarray ;

  • 透明地使用GPU--执行数据密集型计算比CPU快了140多倍(针对Float32);

  • 高效符号分化--Theano将函数的导数分为一个或多个不同的输入;

  • 速度和稳定性的优化--即使输入的x非常小也可以得到log(1+x)正确结果;

  • 动态生成 C代码--表达式计算更快;

  • 广泛的单元测试和自我验证--多种错误类型的检测和判定。


自2007年起,Theano一直致力于大型密集型科学计算研究,但它目前也很被广泛应用在课堂之上( 如Montreal大学的深度学习/机器学习课程)。


开发语言:Python

GitHub项目地址:https://github.com/Theano/Theano


12. MXNet


MXNet是一个兼具效率和灵活性的深度学习框架。它允许使用者将符号编程和命令式编程相结合,以追求效率和生产力的最大化。其核心是动态依赖调度程序,该程序可以动态自动进行并行化符号和命令的操作。其中部署的图形优化层使得符号操作更快和内存利用率更高。该库轻量且便携带,并且可扩展到多个GPU和多台主机上。


主要特点:

  • 其设计说明提供了有用的见解,可以被重新应用到其他DL项目中;

  • 任意计算图的灵活配置;

  • 整合了各种编程方法的优势最大限度地提高灵活性和效率;

  • 轻量、高效的内存以及支持便携式的智能设备;

  • 多GPU扩展和分布式的自动并行化设置;

  • 支持Python、R、C++和 Julia;

  • 对“云计算”友好,直接兼容S3、HDFS和Azure。

MXNet不仅仅是一个深度学习项目,它更是一个建立深度学习系统的蓝图、指导方针以及黑客们对深度学习系统独特见解的结合体。


开发语言:Jupyter Notebook

开源许可:Apache-2.0 license

GitHub项目地址:https://github.com/dmlc/mxnet


13. Vowpal Wabbit

Vowpal Wabbit是一个机器学习系统,该系统推动了如在线、散列、Allreduce、Learning2search、等方面机器学习前沿技术的发展。 其训练速度很快,在20亿条训练样本,每个训练样本大概100个非零特征的情况下:如果特征的总位数为一万时,训练时间为20分钟;特征总位数为1000万时,训练时间为2个小时。Vowpal Wabbit支持分类、 回归、矩阵分解和LDA。


当在Hadoop上运行Vowpal Wabbit时,有以下优化机制:

  • 懒惰初始化:在进行All Reduce之前,可将全部数据加载到内存中并进行缓存。即使某一节点出现了错误,也可以通过在另外一个节点上使用错误节点的数据(通过缓存来获取)来继续训练。

  • Speculative Execution:在大规模集群当中,一两个很慢的Mapper会影响整个Job的性能。Speculative Execution的思想是当大部分节点的任务完成时,Hadoop可以将剩余节点上的任务拷贝到其他节点完成。


开发语言:C++

GitHub项目地址:https://github.com/JohnLangford/vowpal_wabbit


14. Ruby Warrior

通过设计了一个游戏使得Ruby语言和人工智能学习更加有乐趣和互动起来。

使用者扮演了一个勇士通过爬上一座高塔,到达顶层获取珍贵的红宝石(Ruby)。在每一层,需要写一个Ruby脚本指导战士打败敌人、营救俘虏、到达楼梯。使用者对每一层都有一些认识,但是你永远都不知道每层具体会发生什么情况。你必须给战士足够的人工智能,以便让其自行寻找应对的方式。

勇士的动作相关API:

  • Warrior.walk: 用来控制勇士的移动,默认方向是往前;

  • warrior.feel:使用勇士来感知前方的情况,比如是空格,还是有怪物;

  • Warrior.attack:让勇士对怪物进行攻击;

  • Warrior.health:获取勇士当前的生命值;

  • Warrior.rest:让勇士休息一回合,恢复最大生命值的10%。

勇士的感知API:

  • Space.empty:感知前方是否是空格;

  • Space.stairs:感知前方是否是楼梯;

  • Space.enemy: 感知前方是否有怪物;

  • Space.captive:感知前方是否有俘虏;

  • Space.wall:感知前方是否是墙壁。


开发语言:Ruby

GitHub项目地址:https://github.com/ryanb/ruby-warrior


以上为GitHub上最流行的开源机器学习项目TOP14,点击”阅读原文“,查看更多开源机器学习项目。

 
云栖社区 更多文章 云栖社区送元宵:一个是MySQL实时培训,另一个是机器学习框架技术博文 社区精选来几套,欢欢乐乐闹元宵!【49篇深度】 TokuDB的几个黑科技工具 开源项目的正确使用姿势,都是血和泪的总结! OSS无缝数据迁移方案
猜您喜欢 源码电台【16】 我的Google 面试经历 网站百度快照怎么没了 百度快照取消时间 UI自动化测试框架 网易杭州PD在招人,看过来咯~