微信号:PythonTZXY

介绍:每天更新,更新python相关的知识.希望诸君有所收获!

教你分分钟学会用python爬虫框架Scrapy爬取心目中的女神

2017-11-12 21:48 yangjiyue


什么是scrapy

        Scrapy,Python开发的一个快速,高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据。Scrapy用途广泛,可以用于数据挖掘、监测和 自动化测试 。

        Scrapy吸引人的地方在于它是一个框架,任何人都可以根据需求方便的修改。它也提供了多种类型爬虫的基类,如BaseSpider、sitemap爬虫等,最新版本又提供了web2.0爬虫的支持。

        Scratch,是抓取的意思,这个Python的爬虫框架叫Scrapy,大概也是这个意思吧,就叫它:小刮刮吧。



Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下

小编看到这个图的样子

  • 引擎(Scrapy)
    用来处理整个系统的数据流处理, 触发事务(框架核心)

  • 调度器(Scheduler)
    用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址

  • 下载器(Downloader)
    用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)

  • 爬虫(Spiders)
    爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面

  • 项目管道(Pipeline)
    负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。

  • 下载器中间件(Downloader Middlewares)
    位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。

  • 爬虫中间件(Spider Middlewares)
    介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。

  • 调度中间件(Scheduler Middewares)
    介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

Scrapy运行流程大概如下:

  1. 引擎从调度器中取出一个链接(URL)用于接下来的抓取

  2. 引擎把URL封装成一个请求(Request)传给下载器

  3. 下载器把资源下载下来,并封装成应答包(Response)

  4. 爬虫解析Response

  5. 解析出实体(Item),则交给实体管道进行进一步的处理

  6. 解析出的是链接(URL),则把URL交给调度器等待抓取

安装scrapy


基本使用

1、创建项目

运行命令:

scrapy startproject p1(your_project_name)

2.自动创建目录的结果:

文件说明:

  • scrapy.cfg  项目的配置信息,主要为Scrapy命令行工具提供一个基础的配置信息。(真正爬虫相关的配置信息在settings.py文件中)

  • items.py    设置数据存储模板,用于结构化数据,如:Django的Model

  • pipelines    数据处理行为,如:一般结构化的数据持久化

  • settings.py 配置文件,如:递归的层数、并发数,延迟下载等

  • spiders      爬虫目录,如:创建文件,编写爬虫规则


注意:一般创建爬虫文件时,以网站域名命名

3、编写爬虫

在spiders目录中新建 xiaohuar_spider.py 文件

示例代码:


#!/usr/bin/env python

# -*- coding:utf-8 -*-

import scrapy

 

class XiaoHuarSpider(scrapy.spiders.Spider):

    name = "xiaohuar"

    allowed_domains = ["xiaohuar.com"]

    start_urls = [

        "http://www.gg4493.cn/",

    ]

 

    def parse(self, response):

        # print(response, type(response))

        # from scrapy.http.response.html import HtmlResponse

        # print(response.body_as_unicode())

 

        current_url = response.url #爬取时请求的url

        body = response.body  #返回的html

        unicode_body = response.body_as_unicode()#返回的html unicode编码


备注:

  • 1.爬虫文件需要定义一个类,并继承scrapy.spiders.Spider

  • 2.必须定义name,即爬虫名,如果没有name,会报错。因为源码中是这样定义的:

  • 3.编写函数parse,这里需要注意的是,该函数名不能改变,因为Scrapy源码中默认callback函数的函数名就是parse;

  • 4.定义需要爬取的url,放在列表中,因为可以爬取多个url,Scrapy源码是一个For循环,从上到下爬取这些url,使用生成器迭代将url发送给下载器下载url的html。源码截图:

4、运行

进入p1目录,运行命令

scrapy crawl xiaohau --nolog

格式:scrapy crawl+爬虫名  –nolog即不显示日志

5.scrapy查询语法:

当我们爬取大量的网页,如果自己写正则匹配,会很麻烦,也很浪费时间,令人欣慰的是,scrapy内部支持更简单的查询语法,帮助我们去html中查询我们需要的标签和标签内容以及标签属性。下面逐一进行介绍:

  • 查询子子孙孙中的某个标签(以div标签为例)://div

  • 查询儿子中的某个标签(以div标签为例):/div

  • 查询标签中带有某个class属性的标签://div[@class=’c1′]即子子孙孙中标签是div且class=‘c1’的标签

  • 查询标签中带有某个class=‘c1’并且自定义属性name=‘alex’的标签://div[@class=’c1′][@name=’alex’]

  • 查询某个标签的文本内容://div/span/text() 即查询子子孙孙中div下面的span标签中的文本内容

  • 查询某个属性的值(例如查询a标签的href属性)://a/@href

示例代码:


def parse(self, response):

       # 分析页面

       # 找到页面中符合规则的内容(校花图片),保存

       # 找到所有的a标签,再访问其他a标签,一层一层的搞下去

 

       hxs = HtmlXPathSelector(response)#创建查询对象

 

       # 如果url是 http://www.xiaohuar.com/list-1-\d+.html

       if re.match('http://www.gg4493.cn/', response.url): #如果url能够匹配到需要爬取的url,即本站url

           items = hxs.select('//div[@class="item_list infinite_scroll"]/div') #select中填写查询目标,按scrapy查询语法书写

           for i in range(len(items)):

               src = hxs.select('//div[@class="item_list infinite_scroll"]/div[%d]//div[@class="img"]/a/img/@src' % i).extract()#查询所有img标签的src属性,即获取校花图片地址

               name = hxs.select('//div[@class="item_list infinite_scroll"]/div[%d]//div[@class="img"]/span/text()' % i).extract() #获取span的文本内容,即校花姓名

               school = hxs.select('//div[@class="item_list infinite_scroll"]/div[%d]//div[@class="img"]/div[@class="btns"]/a/text()' %i).extract() #校花学校

               if src:

                   ab_src = "http://www.gg4493.cn/" + src[0]#相对路径拼接

                   file_name = "%s_%s.jpg" % (school[0].encode('utf-8'), name[0].encode('utf-8')) #文件名,因为python27默认编码格式是unicode编码,因此我们需要编码成utf-8

                   file_path = os.path.join("/Users/wupeiqi/PycharmProjects/beauty/pic", file_name)

                   urllib.urlretrieve(ab_src, file_path)


注:urllib.urlretrieve(ab_src, file_path) ,接收文件路径和需要保存的路径,会自动去文件路径下载并保存到我们指定的本地路径。

递归爬取网页

上述代码仅仅实现了一个url的爬取,如果该url的爬取的内容中包含了其他url,而我们也想对其进行爬取,那么如何实现递归爬取网页呢?

示例代码:

# 获取所有的url,继续访问,并在其中寻找相同的url

        all_urls = hxs.select('//a/@href').extract()

        for url in all_urls:

            if url.startswith('http://www.gg4493.cn/'):

                yield Request(url, callback=self.parse)

即通过yield生成器向每一个url发送request请求,并执行返回函数parse,从而递归获取校花图片和校花姓名学校等信息。

注:可以修改settings.py 中的配置文件,以此来指定“递归”的层数,如: DEPTH_LIMIT = 1

6.scrapy查询语法中的正则:

from scrapy.selector import Selector

from scrapy.http import HtmlResponse

html = """<!DOCTYPE html>

<html>

<head lang="en">

    <meta charset="UTF-8">

    <title></title>

</head>

<body>

    <li class="item-"><a href="link.html">first item</a></li>

    <li class="item-0"><a href="link1.html">first item</a></li>

    <li class="item-1"><a href="link2.html">second item</a></li>

</body>

</html>

"""

response = HtmlResponse(url='http://www.gg4493.cn/', body=html,encoding='utf-8')

ret = Selector(response=response).xpath('//li[re:test(@class, "item-\d*")]//@href').extract()

print(ret)

  • 语法规则:Selector(response=response查询对象).xpath(‘//li[re:test(@class, “item-d*”)]//@href’).extract(),即根据re正则匹配,test即匹配,属性名是class,匹配的正则表达式是”item-d*”,然后获取该标签的href属性。

 

#!/usr/bin/env python

# -*- coding:utf-8 -*-

 

import scrapy

import hashlib

from tutorial.items import JinLuoSiItem

from scrapy.http import Request

from scrapy.selector import HtmlXPathSelector

 

 

class JinLuoSiSpider(scrapy.spiders.Spider):

    count = 0

    url_set = set()

 

    name = "jluosi"

    domain = 'http://www.girl4493.cn/'

    allowed_domains = ["jluosi.com"]

 

    start_urls = [

        "http://www.mimi131.cn/",

    ]

 

    def parse(self, response):

        md5_obj = hashlib.md5()

        md5_obj.update(response.url)

        md5_url = md5_obj.hexdigest()

        if md5_url in JinLuoSiSpider.url_set:

            pass

        else:

            JinLuoSiSpider.url_set.add(md5_url)

            hxs = HtmlXPathSelector(response)

            if response.url.startswith('http://www.jluosi.com:80/ec/goodsDetail.action'):

                item = JinLuoSiItem()

                item['company'] = hxs.select('//div[@class="ShopAddress"]/ul/li[1]/text()').extract()

                item['link'] = hxs.select('//div[@class="ShopAddress"]/ul/li[2]/text()').extract()

                item['qq'] = hxs.select('//div[@class="ShopAddress"]//a/@href').re('.*uin=(?P<qq>\d*)&')

                item['address'] = hxs.select('//div[@class="ShopAddress"]/ul/li[4]/text()').extract()

 

                item['title'] = hxs.select('//h1[@class="goodsDetail_goodsName"]/text()').extract()

 

                item['unit'] = hxs.select('//table[@class="R_WebDetail_content_tab"]//tr[1]//td[3]/text()').extract()

                product_list = []

                product_tr = hxs.select('//table[@class="R_WebDetail_content_tab"]//tr')

                for i in range(2,len(product_tr)):

                    temp = {

                        'standard':hxs.select('//table[@class="R_WebDetail_content_tab"]//tr[%d]//td[2]/text()' %i).extract()[0].strip(),

                        'price':hxs.select('//table[@class="R_WebDetail_content_tab"]//tr[%d]//td[3]/text()' %i).extract()[0].strip(),

                    }

                    product_list.append(temp)

 

                item['product_list'] = product_list

                yield item

 

            current_page_urls = hxs.select('//a/@href').extract()

            for i in range(len(current_page_urls)):

                url = current_page_urls[i]

                if url.startswith('http://www.baby199.cn'):

                    url_ab = url

                    yield Request(url_ab, callback=self.parse)

选择器规则Demo

def parse(self, response):

    from scrapy.http.cookies import CookieJar

    cookieJar = CookieJar()

    cookieJar.extract_cookies(response, response.request)

    print(cookieJar._cookies)

获取响应cookie

更多选择器规则:http://www.baby98.cn/

7、格式化处理

上述实例只是简单的图片处理,所以在parse方法中直接处理。如果对于想要获取更多的数据(获取页面的价格、商品名称、QQ等),则可以利用Scrapy的items将数据格式化,然后统一交由pipelines来处理。即不同功能用不同文件实现。

items:即用户需要爬取哪些数据,是用来格式化数据,并告诉pipelines哪些数据需要保存。

示例items.py文件:

# -*- coding: utf-8 -*-

 

# Define here the models for your scraped items

#

# See documentation in:

# http://doc.scrapy.org/en/latest/topics/items.html

 

import scrapy

 

class JieYiCaiItem(scrapy.Item):

 

    company = scrapy.Field()

    title = scrapy.Field()

    qq = scrapy.Field()

    info = scrapy.Field()

    more = scrapy.Field()

即:需要爬取所有url中的公司名,title,qq,基本信息info,更多信息more。

上述定义模板,以后对于从请求的源码中获取的数据同样按照此结构来获取,所以在spider中需要有一下操作:

#!/usr/bin/env python

# -*- coding:utf-8 -*-

 

import scrapy

import hashlib

from beauty.items import JieYiCaiItem

from scrapy.http import Request

from scrapy.selector import HtmlXPathSelector

from scrapy.spiders import CrawlSpider, Rule

from scrapy.linkextractors import LinkExtractor

 

 

class JieYiCaiSpider(scrapy.spiders.Spider):

    count = 0

    url_set = set()

 

    name = "jieyicai"

    domain = 'http://www.meimei233.com'

    allowed_domains = ["jieyicai.com"]

 

    start_urls = [

        "http://www.meimei333.com",

    ]

 

    rules = [

        #下面是符合规则的网址,但是不抓取内容,只是提取该页的链接(这里网址是虚构的,实际使用时请替换)

        #Rule(SgmlLinkExtractor(allow=(r'http://test_url/test?page_index=\d+'))),

        #下面是符合规则的网址,提取内容,(这里网址是虚构的,实际使用时请替换)

        #Rule(LinkExtractor(allow=(r'http://www.jieyicai.com/Product/Detail.aspx?pid=\d+')), callback="parse"),

    ]

 

    def parse(self, response):

        md5_obj = hashlib.md5()

        md5_obj.update(response.url)

        md5_url = md5_obj.hexdigest()

        if md5_url in JieYiCaiSpider.url_set:

            pass

        else:

            JieYiCaiSpider.url_set.add(md5_url)

            

            hxs = HtmlXPathSelector(response)

            if response.url.startswith('http://www.jieyicai.com/Product/Detail.aspx'):

                item = JieYiCaiItem()

                item['company'] = hxs.select('//span[@class="username g-fs-14"]/text()').extract()

                item['qq'] = hxs.select('//span[@class="g-left bor1qq"]/a/@href').re('.*uin=(?P<qq>\d*)&')

                item['info'] = hxs.select('//div[@class="padd20 bor1 comard"]/text()').extract()

                item['more'] = hxs.select('//li[@class="style4"]/a/@href').extract()

                item['title'] = hxs.select('//div[@class="g-left prodetail-text"]/h2/text()').extract()

                yield item

 

            current_page_urls = hxs.select('//a/@href').extract()

            for i in range(len(current_page_urls)):

                url = current_page_urls[i]

                if url.startswith('/'):

                    url_ab = JieYiCaiSpider.domain + url

                    yield Request(url_ab, callback=self.parse)

 

spider

上述代码中:对url进行md5加密的目的是避免url过长,也方便保存在缓存或数据库中。

此处代码的关键在于:

  • 将获取的数据封装在了Item对象中

  • yield Item对象 (一旦parse中执行yield Item对象,则自动将该对象交个pipelines的类来处理)

# -*- coding: utf-8 -*-

 

# Define your item pipelines here

#

# Don't forget to add your pipeline to the ITEM_PIPELINES setting

# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html

 

import json

from twisted.enterprise import adbapi

import MySQLdb.cursors

import re

 

mobile_re = re.compile(r'(13[0-9]|15[012356789]|17[678]|18[0-9]|14[57])[0-9]{8}')

phone_re = re.compile(r'(\d+-\d+|\d+)')

 

class JsonPipeline(object):

 

    def __init__(self):

        self.file = open('/Users/wupeiqi/PycharmProjects/beauty/beauty/jieyicai.json', 'wb')

 

 

    def process_item(self, item, spider):

        line = "%s  %s\n" % (item['company'][0].encode('utf-8'), item['title'][0].encode('utf-8'))

        self.file.write(line)

        return item

 

class DBPipeline(object):

 

    def __init__(self):

        self.db_pool = adbapi.ConnectionPool('MySQLdb',

                                             db='DbCenter',

                                             user='root',

                                             passwd='123',

                                             cursorclass=MySQLdb.cursors.DictCursor,

                                             use_unicode=True)

 

    def process_item(self, item, spider):

        query = self.db_pool.runInteraction(self._conditional_insert, item)

        query.addErrback(self.handle_error)

        return item

 

    def _conditional_insert(self, tx, item):

        tx.execute("select nid from company where company = %s", (item['company'][0], ))

        result = tx.fetchone()

        if result:

            pass

        else:

            phone_obj = phone_re.search(item['info'][0].strip())

            phone = phone_obj.group() if phone_obj else ' '

 

            mobile_obj = mobile_re.search(item['info'][1].strip())

            mobile = mobile_obj.group() if mobile_obj else ' '

 

            values = (

                item['company'][0],

                item['qq'][0],

                phone,

                mobile,

                item['info'][2].strip(),

                item['more'][0])

            tx.execute("insert into company(company,qq,phone,mobile,address,more) values(%s,%s,%s,%s,%s,%s)", values)

 

    def handle_error(self, e):

        print 'error',e


上述代码中多个类的目的是,可以同时保存在文件和数据库中,保存的优先级可以在配置文件settings中定义。

ITEM_PIPELINES = {

    'beauty.pipelines.DBPipeline': 300,

    'beauty.pipelines.JsonPipeline': 100,

}

# 每行后面的整型值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内。


总结:本文对python爬虫框架Scrapy做了详细分析和实例讲解

作者:yangjijue

源自:http://www.cnblogs.com/yangjiyue/p/7821785.html

声明: 文章著作权归作者所有,如有侵权,请联系小编删除

 
Python学习交流 更多文章 Python爬取网站VIP资源 明明可以免费,我为什么要推荐付费学习? 三种 Python 网络内容抓取工具与爬虫 Python爬取某个18禁网站的电影资源 报名Python全套课程居然这么棒?!
猜您喜欢 万物生长——这个青春片不太一样 世界上最有用的软件——简易笔记,在IOS、MacOS和安卓系统上开源啦 “域名劫持”的话题终于炸了!手把手教小白用户防止域名劫持 2018届互联网校招高薪清单流出,你怎么看? 最新 10 款小程序,最后一个脑洞真大 | 晓榜