微信号:pingcap2015

介绍:PingCAP 专注于新型分布式数据库的研发,是知名开源数据库 TiDB (Github 4100 stars) 背后的团队,研发总部在北京,是国内第一家开源的新型分布式 NewSQL 数据库公司,也是国内领先的大数据技术和解决方案提供商.

TiDB 源码阅读系列文章(十)Chunk 和执行框架简介

2018-06-14 18:37 张建

上一篇《TiDB 源码阅读系列文章(九)Hash Join》中,张建老师介绍了 TiDB Hash Join 的实现以及几种常见的问题,本篇文章中他将继续为大家深入介绍在 TiDB 2.0 中引入的 Chunk 及执行框架。Enjoy~


什么是 Chunk

TiDB 2.0 中,我们引入了一个叫 Chunk(https://github.com/pingcap/tidb/blob/source-code/util/chunk/chunk.go#L32)的数据结构用来在内存中存储内部数据,用于减小内存分配开销、降低内存占用以及实现内存使用量统计/控制,其特点如下:

  • 只读

  • 不支持随机写

  • 只支持追加写

  • 列存,同一列的数据连续的在内存中存放

Chunk 本质上是 Column 的集合,它负责连续的在内存中存储同一列的数据,接下来我们看看 Column 的实现。


1.  Column

Column 的实现参考了 Apache Arrow,Column 的代码在 这里。根据所存储的数据类型,我们有两种 Column:

  • 定长 Column:存储定长类型的数据,比如 DoubleBigintDecimal 等;

  • 变长 Column:存储变长类型的数据,比如 CharVarchar 等。

哪些数据类型用定长 Column,哪些数据类型用变长 Column 可以看函数 addColumnByFieldType

Column 里面的字段非常多,这里先简单介绍一下:

  • length

    用来表示这个 Column 有多少行数据。

  • nullCount

    用来表示这个 Column 中有多少 NULL 数据。

  • nullBitmap

    用来存储这个 Column 中每个元素是否是 NULL,需要特殊注意的是我们使用 0 表示 NULL,1 表示非 NULL,和 Apache Arrow 一样。

  • data

    存储具体的数据,不管定长还是变长的 Column,所有的数据都存储在这个 byte slice 中。

  • offsets

    给变长的 Column 使用,存储每个数据在 data 这个 slice 中的偏移量。

  • elemBuf

    给定长的 Column 使用,当需要读或者写一个数据的时候,使用它来辅助 encode 和 decode。


1.1  追加一个定长的非 NULL 值

追加一个元素需要根据具体的数据类型调用具体的 append 方法,比如:appendInt64appendString 等。

一个定长类型的 Column 可以用如下图表示:

我们以 appendInt64 为例来看看如何追加一个定长类型的数据:

  • 使用 unsafe.Pointer 把要 append 的数据先复制到 elemBuf 中;

  • elemBuf 中的数据 append 到 data 中;

  • nullBitmap 中 append 一个 1。

上面第 1 步在 appendInt64 这个函数中完成,第 2、3 步在 finishAppendFixed 这个函数中完成。其他定长类型元素的追加操作非常相似,感兴趣的同学可以接着看看 appendFloat32appendTime 等函数。


1.2  追加一个变长的非 NULL 值

而一个变长的 Column 可以用下图表示:

我们以 appendString 为例来看看如何追加一个变长类型的数据:

  • 把数据先 append 到 data 中;

  • nullBitmap 中 append 一个 1;

  • offsets 中 append 当前 data 的 size 作为下一个元素在 data 中的起始点。

上面第 1 步在 appendString 这个函数中完成,第 2、3 步在 finishAppendVar 这个函数中完成。其他边长类型元素的追加操作也是非常相似,感兴趣的同学可以接着看看 appendBytesappendJSON 等函数


1.3  追加一个 NULL 值

我们使用 appendNull 函数来向一个 Column 中追加一个 NULL 值:

  • nullBitmap 中 append 一个 0;

  • 如果是定长 Column,需要往 data 中 append 一个 elemBuf 长度的数据,用来占位;

  • 如果是变长 Column,不用往 data中 append 数据,而是往 offsets 中 append 当前 data 的 size 作为下一个元素在 data 中的起始点。


2.  Row

如上图所示:Chunk 中的 Row 是一个逻辑上的概念:Row 中的数据存储在 Chunk 的各个 Column 中,同一个 Row 中的数据在内存中没有连续存储在一起,我们在获取一个 Row 对象的时候也不需要进行数据拷贝。提供 Row 的概念是因为算子运行过程中,大多数情况都是以 Row 为单位访问和操作数据,比如聚合,排序等。 

Row 提供了获取 Chunk 中数据的方法,比如 GetInt64GetStringGetMyDecimal 等,前面介绍了往 Column 中 append 数据的方法,获取数据的方法可以由 append 数据的方法反推,代码也比较简单,这里就不再详细介绍了。


3.  使用

目前 Chunk 这个包只对外暴露了 Chunk, Row 等接口,而没有暴露 Column,所以,写数据调用的是在 Chunk 上实现的对 Column 具体函数的 warpper,比如 AppendInt64;读数据调用的是在 Row 上实现的 Getxxx 函数,比如 GetInt64


执行框架简介

1.  老执行框架简介

在重构前,TiDB 1.0 中使用的执行框架会不断调用 Child 的 Next 函数获取一个由 Datum 组成的 Row(和刚才介绍的 Chunk Row 是两个数据结构),这种执行方式的特点是:每次函数调用只返回一行数据,且不管是什么类型的数据都用 Datum 这个结构体来封装。

这种方法的优点是:简单、易用。缺点是:

  • 如果处理的数据量多,那么框架上的函数调用开销将会非常大;

  • Datum 占用的无效内存太大,内存浪费比较多(存一个 8 字节的整数需要 56 字节);

  • Datum 没有重用,golang 的 gc 压力大;

  • 每个 Operator 一次只输出一行数据,要进行更加缓存友好的计算、更充分的利用 CPU 的 pipeline 非常困难;

  • Datum 中的 interface 类型的数据,统计它的内存使用量比较困难。


2.  新执行框架简介

在重构后,TiDB 2.0 中使用的执行框架会不断调用 Child 的 NextChunk 函数,获取一个 Chunk 的数据。

这种执行方式的特点是:

  • 每次函数调用返回一批数据,数据量由一个叫“tidb_max_chunk_size”session 变量来控制,默认是 1024 行。因为 TiDB 是一个混合 TP 和 AP 的数据库,对于 AP 类型的查询来说,因为计算的数据量大,1024 没啥问题,但是对于 TP 请求来说,计算的数据量可能比较少,直接在一开始就分配 1024 行的内存并不是最佳的实践( 这里 有个 github issue 讨论这个问题,欢迎感兴趣的同学来讨论和解决)。

  • Child 把它产出的数据写入到 Parent 传下来的 Chunk 中。

这种执行方式的好处是:

  • 减少了框架上的函数调用开销。比如同样输出 1024 行结果,现在的函数调用次数将会是以前的 1/1024。

  • 内存使用更加高效。Chunk 中的数据组织非常紧凑,存一个 8 字节的整数几乎就只需要 8 字节,没有其他额外的内存开销了。

  • 减轻了 golang 的 gc 压力。Chunk 占用的内存可以不断地重复利用,不用频繁的申请新内存,从而减轻了 golang 的 gc 压力。

  • 查询的执行过程更加缓存友好。如我们之前所说,Chunk 按列来组织数据,在计算的过程中我们也尽量按列来计算,这样既能让一列的数据尽量长时间的待在 Cache 中,减轻 Cache Miss 率,也能充分利用起 CPU 的 pipeline。这一块在后续的源码分析文章中会有详细介绍,这里就不再展开了。

  • 内存监控和控制更加方便。Chunk 中没有使用任何 interface,我们能很方便的直接获取一个 Chunk 当前所占用的内存的大小,具体可以看这个函数:MemoryUsage。关于 TiDB 内存控制,我们也会在后续文章中详细介绍,这里也不再展开了。


3.  新旧执行框架性能对比

采用了新的执行框架后,OLAP 类型语句的执行速度、内存使用效率都有极大提升,从 TPC-H 对比结果 看,性能有数量级的提升。


💡文中划线部分均有跳转 点击【阅读原文】查看原版文章


延展阅读

TiDB 源码阅读系列文章(一)序

TiDB 源码阅读系列文章(二)初识 TiDB 源码

TiDB 源码阅读系列文章(三)SQL 的一生

TiDB 源码阅读系列文章(四)insert 语句概览

TiDB 源码阅读系列文章(五)TiDB SQL Parser 的实现

TiDB 源码阅读系列文章(六)Select 语句概览

TiDB 源码阅读系列文章(七)基于规则的优化

TiDB 源码阅读系列文章(八)基于代价的优化

TiDB 源码阅读系列文章(九)Hash Join


 
PingCAP 更多文章 视频 | Infra Meetup No.69:CASPaxos,一个有趣的 TiDB 在西山居实时舆情监控系统中的应用 TiDB 源码阅读系列文章(九)Hash Join 【Infra Meetup 预告】No.69:CASPaxos,一个有趣的 RSM 算法 视频 | Infra Meetup No.68:虚怀迎远客 魔都 T
猜您喜欢 案例榜单|Hadoop生态系统在广告大数据技术的应用及选型 [DL]深度学习第一弹——矩阵求导的坑[下] Filmie 一次动效和交互的实验 PHP中curl的应用 互动┃互联网前沿沙龙问卷调查