微信号:hzdashuju

介绍:大数据蕴藏着丰富的信息和价值,如何处理好大数据并发掘其潜藏的商业价值,这是大数据时代的新挑战.我们将为大家提供与大数据相关的最新技术和资讯.

一张图告诉你如何8步炼成数据科学家

2017-05-14 20:08 大数据文摘


转自:大数据文摘(ID:bigdatadigest)

编译:焦剑,康欣,姚佳灵

校对:孙沁(Kiki)

可视化:田晋阳


如何成为一个数据科学家?不少刚刚接触这个领域的探索者都在寻找一条尽可能正确的道路。


OK,这条道路确实不是无迹可寻的。虽然并不简单,但是,通过科学的规划和足够的时间投入,数据科学家可以通过很少的花费炼成。


接下来的这张精美的可视化长图从什么是数据科学家说起,然后详细介绍炼成数据科学家的8个步骤。拿好不谢~


首先,什么是数据科学家?数据科学,是一个多学科知识的交集,甚至包括黑客技巧。数据科学家,是比软件工程师更擅长统计学,比统计学家更擅长软件工程的人。目前,数据科学家的典型教育背景是:高中5%,技校5%,大专14%,本科37%,硕士/专业学位31%,博士9%。


第一步:学好统计、数学和机器学习

数学:可汗学院(Khan Academy)的数学,MIT公开课的线性代数;统计学:Udacity和Openintro;机器学习:Stanford在线中吴恩达(Andrew NG)的机器学习,Coursera上John Hopkins的实用机器学习


第二步:学习编写代码

掌握计算机科学的基础知识;掌握从头至尾的开发过程(end-to-end development),因为你做的东西终将被整合到其它系统中;确定你的首选编程语言,开源的R , Python等,商业软件SAS, SPSS等。用DataCamp, tryR, Codecademy和Google Class进行交互式学习。


第三步:理解数据库

作为学生,你会经常与文本数据打交道。但是,一旦进入该领域,你会发现该领域几乎都是用数据库存储数据,如MySQL, Postgres, CouchDB, MongoDB, Cassandra等。


第四步:掌握数据整理、可视化和报表制作

1)数据整理,是将原始数据转换成方便实用的格式。可自学Coursera中John Hopkins的Getting and Cleaning Data课程,实用工具有DataWrangler和R。

2)数据可视化,是创建和研究数据的视觉表现。实用工具有ggvis, D3, vega。

3)数据报表,作为数据分析的最后一步,是将数据分析和结果制作成易于理解的报告。实用工具有Tableau, Spotfire和R Markdown。



第五步:提升到大数据级别

当你开始处理网络级规模的数据时,数据分析的基本方法和过程就都改变了。绝大多数的数据科学家要解决的问题,都无法在单机上完成。他们面对的是需要分布式处理的大型数据集,使用的工具是Hadoop,MapReduce,Apache Spark。


第六步:获得经验、实践,结交大牛

[古人云:]熟能生巧!你可以参加比赛,结交数据科学专家,通过小项目小试牛刀,培养自己的直觉。



第七步:实习、实战、或找份工作

甄别自己是不是一个真正的数据科学家的最佳途径,就是用你新学的知识迎难而上,进入数据分析的丛林。


第八步:关注并参与社区

关注网站:DataTau, Kdnuggets, fivethirtyeight, datascience101, r-bloggers;关注大牛:Hilary Mason, David Smith, Nate Silver, dj patil; 需要数据?上quandl看看。



近期精彩活动(直接点击查看):

福利 · 阅读 | 免费申请读大数据新书 第18期



END


投稿或建议,请联系邮箱:holly0801@163.com。转载大数据公众号文章请联系出处申请授权,否则产生的任何版权纠纷与大数据无关。

大数据


为大家提供与大数据相关的最新技术和资讯。


长按指纹 > 识别图中二维码 > 添加关注


近期精彩文章(直接点击查看):

161224 2016年“大数据”产业的“真实面目” 

161222 傅盛:深度学习是一种新的思维方式 

161216 CCF:2017年大数据发展趋势报告及解读

161213 一文看懂人工智能:原理,技术和未来

161208 如何七周成为数据分析师

161206 一篇文看懂Hadoop:风雨十年,未来何去何从

161205 2017年大数据的十大发展趋势

161129 大数据等最核心的关键技术:32个算法

161126 2016十大热门大数据岗位,拿走不谢

161122 2017年关于数据科学六大预言

161119 漫画:什么是机器学习? 

161114 终年32岁的传奇数学家,生前寂寂无闻,一个世纪后却让硅谷领袖们集体落泪致敬

161112 如何用大数据思维找女朋友?

161108 漫画:什么是大数据

161107 数据可视化的七大秘密

161105 Gartner公布2017年十大战略科技发展趋势 

161028 经验贴│怎样进行大数据入门级学习

161025 干货:数据分析师的能力和工具体系

161023 不装逼地说,在Google十年,到底学到啥? 

161016 大数据投资人必读:中国大数据发展与投资分析报告

161014 您的位置信息如何被利用?——基于位置信息的应用和地理信息匹配算法

161009 硅谷教父凯文·凯利最新预言:未来20年最重要的2个科技趋势! 

161001 十张图看懂未来的大数据世界

更多精彩文章,请在公众号后台回复000查看,谢谢。


 
大数据 更多文章 华为内部狂转好文,大数据,看这一篇就够了! 解锁数据分析的正确姿势:描述统计 避孕套与安全套有什么差别?杜蕾斯&大数据告诉你答案 Excel技巧篇:嘿!别说你会复制粘贴 YC合伙人:微信的发展堪称疯狂,这7点值得学习
猜您喜欢 闪存Violin Memory公司被整体收购 Android 手势检测实战 打造支持缩放平移的图片预览效果(上) 诚聘数据挖掘工程师|数据人才 ops world 2016深圳-Zabbix高级玩法PPT 日请求量过亿,谈陌陌的Feed服务优化之路