微信号:AI_era

介绍:智能+中国主平台,致力于推动中国从互联网+迈向智能+新纪元.重点关注人工智能、机器人等前沿领域发展,关注人机融合、人工智能和机器人革命对人类社会与文明进化的影响,领航中国新智能时代.

Python带我飞:50个有趣而又鲜为人知的Python特性

2018-12-01 12:22 新智元





  新智元推荐 

来源:GitHub

编辑:三石

【新智元导读】这个有趣的项目意在收集 Python 中那些难以理解和反人类直觉的例子,以及鲜为人知的功能特性, 并尝试讨论这些现象背后真正的原理。资深Python 程序员可以尝试挑战,看是否能一次就找到例子的正确答案,也许能唤起你当年踩这些坑时的甜蜜回忆。



Python, 是一个设计优美的解释型高级语言, 它提供了很多能让程序员感到舒适的功能特性。但有的时候, Python 的一些输出结果对于初学者来说似乎并不是那么一目了然。


这个有趣的项目意在收集 Python 中那些难以理解和反人类直觉的例子以及鲜为人知的功能特性, 并尝试讨论这些现象背后真正的原理!


虽然下面的有些例子并不一定会让你觉得 WTFs,但它们依然有可能会告诉你一些你所不知道的 Python 有趣特性。我觉得这是一种学习编程语言内部原理的好办法, 而且我相信你也会从中获得乐趣!


目录



  • Structure of the Examples/示例结构

  • Usage/用法

  • 👀  Examples/示例

    • += is faster/更快的 +=

    • > Let's make a giant string!/来做个巨大的字符串吧!

    • > Explicit typecast of strings/字符串的显式类型转换

    • > Minor Ones/小知识点

    • > Okay Python, Can you make me fly?/Python, 可否带我飞? *

    • goto, but why?/goto, 但为什么? *

    • > Brace yourself!/做好思想准备 *

    • > Let's meet Friendly Language Uncle For Life/让生活更友好 *

    • > Even Python understands that love is complicated/连Python也知道爱是难言的 *

    • > Yes, it exists!/是的, 它存在!

    • > Inpinity/无限 *

    • > Mangling time!修饰时间! *

    • > Modifying a dictionary while iterating over it/迭代字典时的修改

    • > Stubborn del operator/坚强的 del *

    • > Deleting a list item while iterating/迭代列表时删除元素

    • > Loop variables leaking out!/循环变量泄漏!

    • > Beware of default mutable arguments!/当心默认的可变参数!

    • > Catching the Exceptions/捕获异常

    • > Same operands, different story!/同人不同命!

    • > The out of scope variable/外部作用域变量

    • > Be careful with chained operations/小心链式操作

    • > Name resolution ignoring class scope/忽略类作用域的名称解析

    • > Needle in a Haystack/大海捞针

    • > Skipping lines?/跳过一行?

    • > Teleportation/空间移动 *

    • > Well, something is fishy.../嗯, 有些可疑...

    • > Strings can be tricky sometimes/微妙的字符串 *

    • > Time for some hash brownies!/是时候来点蛋糕了!

    • > Return return everywhere!/到处返回!

    • > Deep down, we're all the same./本质上,我们都一样. *

    • > For what?/为什么?

    • > Evaluation time discrepancy/评估时间差异

    • is is not what it is!/出人意料的is!

    • > A tic-tac-toe where X wins in the first attempt!/一蹴即至!

    • > The sticky output function/麻烦的输出

    • is not ... is not is (not ...)/is not ... 不是 is (not ...)

    • > The surprising comma/意外的逗号

    • > Backslashes at the end of string/字符串末尾的反斜杠

    • > not knot!/别纠结!

    • > Half triple-quoted strings/三个引号

    • > Midnight time doesn't exist?/不存在的午夜?

    • > What's wrong with booleans?/布尔你咋了?

    • > Class attributes and instance attributes/类属性和实例属性

    • > yielding None/生成 None

    • > Mutating the immutable!/强人所难

    • > The disappearing variable from outer scope/消失的外部变量

    • > When True is actually False/真亦假

    • > From filled to None in one instruction.../从有到无...

    • > Subclass relationships/子类关系 *

    • > The mysterious key type conversion/神秘的键型转换 *

    • > Let's see if you can guess this?/看看你能否猜到这一点?

    • Section: Strain your brain!/大脑运动!

    • Section: Appearances are deceptive!/外表是靠不住的!

    • Section: Watch out for the landmines!/小心地雷!

    • Section: The Hidden treasures!/隐藏的宝藏!

    • Section: Miscellaneous/杂项

  • Contributing/贡献

  • Acknowledgements/致谢

  • License/许可

    • Help/帮助

    • Want to surprise your geeky pythonist friends?/想给你的极客朋友一个惊喜?

    • Need a pdf version?/需要来一份pdf版的?

    • Follow Commit/追踪Commit


示例结构


所有示例的结构都如下所示:


> 一个精选的标题 *


标题末尾的星号表示该示例在第一版中不存在,是最近添加的。

# 准备代码.
# 释放魔法...



Output (Python version):

>>> 触发语句
出乎意料的输出结果


(可选): 对意外输出结果的简短描述。


说明

简要说明发生了什么以及为什么会发生。

如有必要, 举例说明


Output:

>>> 触发语句 # 一些让魔法变得容易理解的例子
# 一些正常的输入


注意: 所有的示例都在 Python 3.5.2 版本的交互解释器上测试过, 如果不特别说明应该适用于所有 Python 版本。


小标题:Usage/用法


我个人建议, 最好依次阅读下面的示例, 并对每个示例:

  • 仔细阅读设置例子最开始的代码. 如果您是一位经验丰富的 Python 程序员, 那么大多数时候您都能成功预期到后面的结果。

  • 阅读输出结果,

    • 如果不知道, 深呼吸然后阅读说明 (如果你还是看不明白, 别沉默! 可以在这提个 issue)。

    • 如果知道, 给自己点奖励, 然后去看下一个例子。

    • 确认结果是否如你所料。

    • 确认你是否知道这背后的原理。

PS: 你也可以在命令行阅读 WTFpython. 我们有 pypi 包 和 npm 包(支持代码高亮)。(译: 这两个都是英文版的)

安装 npm 包 wtfpython

$ npm install -g wtfpython


或者, 安装 pypi 包 wtfpython

$ pip install wtfpython -U


现在, 在命令行中运行 wtfpython, 你就可以开始浏览了。


小标题:Examples/示例


Section: Strain your brain!/大脑运动!


> Strings can be tricky sometimes/微妙的字符串 *


1、

>>> a = "some_string"
>>> id(a)
140420665652016
>>> id("some" + "_" + "string"# 注意两个的id值是相同的.
140420665652016


2、

>>> a = "wtf"
>>> b = "wtf"
>>> a is b
True

>>> a = "wtf!"
>>> b = "wtf!"
>>> a is b
False

>>> a, b = "wtf!""wtf!"
>>> a is b
True


3、


>>> 'a' * 20 is 'aaaaaaaaaaaaaaaaaaaa'
True
>>> 'a' * 21 is 'aaaaaaaaaaaaaaaaaaaaa'
False


很好理解, 对吧?

说明:

  • 这些行为是由于 Cpython 在编译优化时, 某些情况下会尝试使用已经存在的不可变对象而不是每次都创建一个新对象. (这种行为被称作字符串的驻留[string interning])

  • 发生驻留之后, 许多变量可能指向内存中的相同字符串对象。 (从而节省内存)

  • 在上面的代码中, 字符串是隐式驻留的. 何时发生隐式驻留则取决于具体的实现。这里有一些方法可以用来猜测字符串是否会被驻留:

    • 所有长度为 0 和长度为 1 的字符串都被驻留。

    • 字符串在编译时被实现 ('wtf' 将被驻留, 但是 ''.join(['w', 't', 'f'] 将不会被驻留)

    • 字符串中只包含字母,数字或下划线时将会驻留. 所以 'wtf!' 由于包含 ! 而未被驻留. 可以在这里找到 CPython 对此规则的实现。

  • 当在同一行将 a 和 b 的值设置为 "wtf!" 的时候, Python 解释器会创建一个新对象, 然后同时引用第二个变量. 如果你在不同的行上进行赋值操作, 它就不会“知道”已经有一个 wtf! 对象 (因为 "wtf!" 不是按照上面提到的方式被隐式驻留的). 它是一种编译器优化, 特别适用于交互式环境.

  • 常量折叠(constant folding) 是 Python 中的一种 窥孔优化(peephole optimization) 技术. 这意味着在编译时表达式 'a'*20会被替换为 'aaaaaaaaaaaaaaaaaaaa' 以减少运行时的时钟周期. 只有长度小于 20 的字符串才会发生常量折叠。(为啥? 想象一下由于表达式 'a'*10**10 而生成的 .pyc 文件的大小). 相关的源码实现在这里。


>Time for some hash brownies!/是时候来点蛋糕了!


hash brownie指一种含有大麻成分的蛋糕, 所以这里是句双关

1、

some_dict = {}
some_dict[5.5] = "Ruby"
some_dict[5.0] = "JavaScript"
some_dict[5] = "Python"


Output:

>>> some_dict[5.5]
"Ruby"
>>> some_dict[5.0]
"Python"
>>> some_dict[5]
"Python"


"Python" 消除了 "JavaScript" 的存在?

说明:

  • Python 字典通过检查键值是否相等和比较哈希值来确定两个键是否相同。

  • 具有相同值的不可变对象在Python中始终具有相同的哈希值。

>>> 5 == 5.0
True
>>> hash(5) == hash(5.0)
True



  • 注意: 具有不同值的对象也可能具有相同的哈希值(哈希冲突)。

  • 当执行 some_dict[5] = "Python" 语句时,因为Python将 5 和 5.0 识别为 some_dict 的同一个键, 所以已有值 "JavaScript" 就被 "Python" 覆盖了。

  • 这个 StackOverflow的回答漂亮的解释了这背后的基本原理。

> Return return everywhere!/到处返回!

def some_func():
    try:
        return 'from_try'
    finally:
        return 'from_finally'


Output:

>>> some_func()
'from_finally'


说明:


  • 当在 "try...finally" 语句的 try 中执行 returnbreak 或 continue 后, finally 子句依然会执行。

  • 函数的返回值由最后执行的 return 语句决定. 由于 finally 子句一定会执行, 所以 finally 子句中的 return 将始终是最后执行的语句。

> Deep down, we're all the same./本质上,我们都一样. *

class WTF:
  pass


Output:

>>> WTF() == WTF() # 两个不同的对象应该不相等
False
>>> WTF() is WTF() # 也不相同
False
>>> hash(WTF()) == hash(WTF()) # 哈希值也应该不同
True
>>> id(WTF()) == id(WTF())
True


说明:

  • 当调用 id 函数时, Python 创建了一个 WTF 类的对象并传给 id 函数。然后 id 函数获取其id值 (也就是内存地址), 然后丢弃该对象。该对象就被销毁了。

  • 当我们连续两次进行这个操作时, Python会将相同的内存地址分配给第二个对象。因为 (在CPython中) id 函数使用对象的内存地址作为对象的id值, 所以两个对象的id值是相同的。

  • 综上, 对象的id值仅仅在对象的生命周期内唯一. 在对象被销毁之后, 或被创建之前, 其他对象可以具有相同的id值。

  • 那为什么 is 操作的结果为 False 呢? 让我们看看这段代码。

class WTF(object):
  def __init__(self): print("I")
  def __del__(self): print("D")


Output:

>>> WTF() is WTF()
I
I
D
D
False
>>> id(WTF()) == id(WTF())
I
D
I
D
True


正如你所看到的, 对象销毁的顺序是造成所有不同之处的原因。

> For what?/为什么?

some_string = "wtf"
some_dict = {}
for i, some_dict[i] in enumerate(some_string):
    pass


Output:

>>> some_dict # 创建了索引字典.
{0'w'1't'2'f'}


说明:

  • Python 语法 中对 for 的定义是:

for_stmt: 'for' exprlist 'in' testlist ':' suite ['else' ':' suite]

其中 exprlist 指分配目标. 这意味着对可迭代对象中的每一项都会执行类似 {exprlist} = {next_value} 的操作.

一个有趣的例子说明了这一点:

for i in range(4):
    print(i)
    i = 10

Output:

0
1
2
3

你可曾觉得这个循环只会运行一次?

说明:

    • 由于循环在Python中工作方式, 赋值语句 i = 10 并不会影响迭代循环, 在每次迭代开始之前, 迭代器(这里指 range(4)) 生成的下一个元素就被解包并赋值给目标列表的变量(这里指 i)了.

  • 在每一次的迭代中, enumerate(some_string) 函数就生成一个新值 i (计数器增加) 并从 some_string 中获取一个字符. 然后将字典 some_dict 键 i (刚刚分配的) 的值设为该字符. 本例中循环的展开可以简化为:


>>> i, some_dict[i] = (0'w')
>>> i, some_dict[i] = (1't')
>>> i, some_dict[i] = (2'f')
>>> some_dict



> Evaluation time discrepancy/评估时间差异

1、

array = [1815]
g = (x for x in array if array.count(x) > 0)
array = [2822]


Output:

>>> print(list(g))
[8]


2、

array_1 = [1,2,3,4]
g1 = (x for x in array_1)
array_1 = [1,2,3,4,5]

array_2 = [1,2,3,4]
g2 = (x for x in array_2)
array_2[:] = [1,2,3,4,5]


Output:

>>> print(list(g1))
[1,2,3,4]

>>> print(list(g2))
[1,2,3,4,5]


说明

  • 在生成器表达式中, in 子句在声明时执行, 而条件子句则是在运行时执行。

  • 所以在运行前, array 已经被重新赋值为 [2, 8, 22], 因此对于之前的 18 和 15, 只有 count(8) 的结果是大于 0的, 所以生成器只会生成 8。

  • 第二部分中 g1 和 g2 的输出差异则是由于变量 array_1 和 array_2 被重新赋值的方式导致的。

  • 在第一种情况下, array_1 被绑定到新对象 [1,2,3,4,5], 因为 in 子句是在声明时被执行的, 所以它仍然引用旧对象 [1,2,3,4](并没有被销毁)。

  • 在第二种情况下, 对 array_2 的切片赋值将相同的旧对象 [1,2,3,4] 原地更新为 [1,2,3,4,5]. 因此 g2 和 array_2仍然引用同一个对象(这个对象现在已经更新为 [1,2,3,4,5])。


> is is not what it is!/出人意料的is!


下面是一个在互联网上非常有名的例子。

>>> a = 256
>>> b = 256
>>> a is b
True

>>> a = 257
>>> b = 257
>>> a is b
False

>>> a = 257; b = 257
>>> a is b
True


说明:

is 和 == 的区别

  • is 运算符检查两个运算对象是否引用自同一对象 (即, 它检查两个预算对象是否相同).

  • == 运算符比较两个运算对象的值是否相等.

  • 因此 is 代表引用相同, == 代表值相等. 下面的例子可以很好的说明这点,

>>> [] == []
True
>>> [] is [] # 这两个空列表位于不同的内存地址.
False


256 是一个已经存在的对象, 而 257 不是

当你启动Python 的时候, -5 到 256 的数值就已经被分配好了. 这些数字因为经常使用所以适合被提前准备好。

>>> id(256)
10922528
>>> a = 256
>>> b = 256
>>> id(a)
10922528
>>> id(b)
10922528
>>> id(257)
140084850247312
>>> x = 257
>>> y = 257
>>> id(x)
140084850247440
>>> id(y)
140084850247344


这里解释器并没有智能到能在执行 y = 257 时意识到我们已经创建了一个整数 257, 所以它在内存中又新建了另一个对象。

当 a 和 b 在同一行中使用相同的值初始化时,会指向同一个对象。

>>> a, b = 257257
>>> id(a)
140640774013296
>>> id(b)
140640774013296
>>> a = 257
>>> b = 257
>>> id(a)
140640774013392
>>> id(b)
140640774013488


  • 当 a 和 b 在同一行中被设置为 257 时, Python 解释器会创建一个新对象, 然后同时引用第二个变量. 如果你在不同的行上进行, 它就不会 "知道" 已经存在一个 257 对象了。

  • 这是一种特别为交互式环境做的编译器优化. 当你在实时解释器中输入两行的时候, 他们会单独编译, 因此也会单独进行优化. 如果你在 .py 文件中尝试这个例子, 则不会看到相同的行为, 因为文件是一次性编译的。


> A tic-tac-toe where X wins in the first attempt!/一蹴即至!


Output:

# 我们先初始化一个变量row
row = [""]*3 #row i['', '', '']
# 并创建一个变量board
board = [row]*3


我们有没有赋值过3个 "X" 呢?

>>> board
[[''''''], [''''''], ['''''']]
>>> board[0]
['''''']
>>> board[0][0]
''
>>> board[0][0] = "X"
>>> board
[['X'''''], ['X'''''], ['X''''']]


说明:

当我们初始化 row 变量时, 下面这张图展示了内存中的情况。


而当通过对 row 做乘法来初始化 board 时, 内存中的情况则如下图所示 (每个元素 board[0]board[1] 和 board[2] 都和 row 一样引用了同一列表。)



我们可以通过不使用变量 row 生成 board 来避免这种情况. (这个issue提出了这个需求。)

>>> board = [['']*3 for _ in range(3)]
>>> board[0][0] = "X"
>>> board
[['X'''''], [''''''], ['''''']]

> The sticky output function/麻烦的输出

funcs = []
results = []
for x in range(7):
    def some_func():
        return x
    funcs.append(some_func)
    results.append(some_func())

funcs_results = [func() for func in funcs]


Output:

>>> results
[0123456]
>>> funcs_results
[6666666]


即使每次在迭代中将 some_func 加入 funcs 前的 x 值都不相同, 所有的函数还是都返回6。


说明:

  • 当在循环内部定义一个函数时, 如果该函数在其主体中使用了循环变量, 则闭包函数将与循环变量绑定, 而不是它的值. 因此, 所有的函数都是使用最后分配给变量的值来进行计算的.

  • 可以通过将循环变量作为命名变量传递给函数来获得预期的结果. 为什么这样可行? 因为这会在函数内再次定义一个局部变量。

funcs = []
for x in range(7):
    def some_func(x=x):
        return x
    funcs.append(some_func)


Output:

>>> funcs_results = [func() for func in funcs]
>>> funcs_results
[0123456]


is not ... is not is (not ...)/is not ... 不是 is (not ...)


>>> 'something' is not None
True
>>> 'something' is (not None)
False

说明:

  • is not 是个单独的二进制运算符, 和分别使用 is 和 not 不同。

  • 如果操作符两侧的变量指向同一个对象, 则 is not 的结果为 False, 否则结果为 True。


更多内容请看原文链接:

https://github.com/leisurelicht/wtfpython-cn


【加入社群】


新智元 AI 技术 + 产业社群招募中,欢迎对 AI 技术 + 产业落地感兴趣的同学,加小助手微信号:aiera2015_2  入群;通过审核后我们将邀请进群,加入社群后务必修改群备注(姓名 - 公司 - 职位;专业群审核较严,敬请谅解)。



 
新智元 更多文章 华为霸气回应被全球“围剿”:没有我们,美国跑不赢5G竞赛! 拳打TPU,脚踢英特尔,亚马逊自研CPU和AI云芯片曝光! 2018全球高被引学者榜单出炉!中国上榜538人,计算机类排名第一 AI芯片年度最大融资,地平线将融资10亿美元!AI芯片学者地图出炉 【重磅】阿里云变阵阿里云智能,换帅行巅!与腾讯、华为三云争霸
猜您喜欢 36氪模式分析之「饭美美」:5年300亿,用无人售饭机颠覆外卖的野心 平安金融科技移动技术周报(第三十四期) 不浮躁,让“优聚+”来成就品质,我们所有的一切都需要更加精益求精! 值得你关注的23款企业级服务工具 代码审查的实践