微信号:aitechtalk

介绍:关注国内外人工智能与机器科学领域的前沿技术.

开发 | 微软携手亚马逊推出全新Gluon深度学习库,全面支持符号式和命令式编程

2017-10-13 13:30 Non

AI科技评论消息:继微软和Facebook联手发布ONNX开源生态标准,日前,微软和亚马逊又达成一致,携手发布Gluon深度学习库。

据微软方面表示,Gluon是一个深度学习库(接口),它是一个支持符号式和命令式编程的API,在创造深度学习模型的过程中能极大的简化进程,而不会使训练速度减慢。Gluon也将支持CNTK(Microsoft Cognitive Toolkit)深度学习库。Gluon为开发者提供的高级KPI能让他们交替运行不同的深度学习库。

Gluon具体介绍

Gluon用于构建神经网络,很简洁,是一个动态的高级深度学习库(接口),在使用MXNet和CNTK时都可以调用它,微软Azure的所有服务、工具和基础结构也将全面支持Gluon。Gluon为开发者提供的接口非常好用,它支持高度可扩展的训练,能高效的评估模型。对于经验老道的研究人员来说,在发挥Gluon的优势时完全不会牺牲灵活性。对于一些公司、数据科学家和开发者来说,Gluon支持一些高级API和预建/模块化的构件,很简洁,并且非常适用于深度学习。

Gluon的主要特征和好处

Gluon能让开发者更简单的学习、规定和调试深度神经网络,也可以让接下来的迭代和保持更加简单,也支持开发作者快速构建和训练神经网络,主要的亮点如下:

  • 符号式和命令式编程

对于高级用户,Gluon支持很多复杂技术,如动态图和灵活结构。目前还没有同时支持符号式和命令式编程的其他工具包。

  • Hybridization

Gluon包含完全的符号化的自动微分代码,这些代码已经被程序执行了,也包括控制流。

Gluon通过hybridization实现这一点:静态计算图先被计算出来,然后在随后的迭代中缓存和重用。计算图也可以被导出,例如给移动设备提供服务。

  • 规定复杂模型

Gluon自带一个丰富的内嵌层库,通过重用库中预建的构件,可以大大简化规定复杂模型架构的任务。

  • 执行高效

Gluon支持循环和不规则张量(ragged tensors)(能批处理变长度序列),对于RNN和LSTM模型具有空前的效率。

  • 支持稀疏数据

Gluon提供对稀疏和量化数据及操作的全面支持,可以用于计算和通信。稀疏性在NLP领域的深度神经网络中非常常见,而量化对于运行时性能评估至关重要。

  • 先进的调度

虽然在单个GPU上进行调度很容易,但在多个GPU上操作要复杂得多。通过MXNet或CNTK后端,Gluon在符号式和命令式模式下都提供自动分配。

总结

利用Gluon,开发者将能使用他们最喜欢的高级编程模型、工具和平台,更快地传递一些新的、令人兴奋的创新AI观念。Gluon将和ONNX(能支持用户用标准格式创造和保存AI模型)一起,创造一个全新的开放AI生态。期待大家利用这些工具带来更多更好的想法。

关于ONNX,可以参见AI科技评论此前报导:Facebook、微软联合推出 ONNX 标准,号称要解决开发框架碎片化。

目前在MXNet上已经可以使用Gluon接口了,可以在GitHub上查看详情,地址为:

https://github.com/gluon-api/gluon-api/

微软也表示他们即将推出支持CNTK的版本,雷锋网 AI科技评论也将持续关注,为大家带来最新消息。

via:Microsoft官网,AI科技评论编辑整理。

—————  AI 科技评论招人啦!  —————

我们诚招学术编辑 1 名(全职,坐标北京)

你即将从事的工作内容:

  • 报道海内外人工智能相关学术会议,形成具有影响力的报道内容;

  • 采访高校学术青年领袖,输出人工智能领域的深度观点;

  • 跟进国内外学术热点,深入剖析学术动态;

我们希望你是这样的小伙伴:

  • 英语好,有阅读英文科技网站的习惯;

  • 兴趣广,对人工智能有关注及了解;

  • 态度佳,有求知欲,善于学习;

欢迎发送简历到 guoyixin@leiphone.com

—————  给爱学习的你的福利  —————

3个月,从无人问津到年薪30万的秘密究竟是什么?答案在这里——崔立明授课【推荐系统算法工程师-从入门到就业】3个月算法水平得到快速提升,让你的职业生涯更有竞争力!长按识别下方二维码抵达课程详细介绍~

————————————————————

 
AI科技评论 更多文章 从机器翻译来看中国最酷AI挑战赛:赛手体验放第一位 三年千亿! 阿里巴巴成立达摩院,打造全球顶尖产学研交流中心 IJCAI 2017最佳学生论文得主王超岳:基于生成对抗网络的图像编辑方法 | 分享总结 「Deep Learning」读书系列分享第四章:数值计算 | 分享总结 必看!苹果发布Face ID白皮书,一文消掉你的所有疑虑
猜您喜欢 GDI+中发生一般性错误的解决方法 为什么程序员应该学好历史 2014年11月“我最喜爱的编程语言”排行榜 第二部分::任务4:日志 Google DNS-Over-HTTPS