微信号:VTtalk

介绍:分享Python相关技术干货,偶尔扯扯其它的

并发体验:Python抓图的8种方式

2018-06-13 08:44 无名小妖

本文系作者「无名小妖」的第二篇原创投稿文章,作者通过用爬虫示例来说明并发相关的多线程、多进程、协程之间的执行效率对比。如果你喜欢写博客,想投稿可微信我,有稿费酬劳。

假设我们现在要在网上下载图片,一个简单的方法是用 requests+BeautifulSoup。注:本文所有例子都使用python3.5)

单线程

示例 1:get_photos.py

import os
import time
import uuid

import requests
from bs4 import BeautifulSoup

def out_wrapper(func):  # 记录程序执行时间的简单装饰器
   def inner_wrapper():
       start_time = time.time()
       func()
       stop_time = time.time()
       print('Used time {}'.format(stop_time-start_time))
   return inner_wrapper

def save_flag(img, filename):  # 保存图片
   path = os.path.join('down_photos', filename)
   with open(path, 'wb') as fp:
       fp.write(img)

def download_one(url):  # 下载一个图片
   image = requests.get(url)
   save_flag(image.content, str(uuid.uuid4()))

def user_conf():  # 返回30个图片的url
   url = 'https://unsplash.com/'
   ret = requests.get(url)
   soup = BeautifulSoup(ret.text, "lxml")
   zzr = soup.find_all('img')
   ret = []
   num = 0
   for item in zzr:
       if item.get("src").endswith('80') and num < 30:
           num += 1
           ret.append(item.get("src"))
   return ret

@out_wrapper
def download_many():
   zzr = user_conf()
   for item in zzr:
       download_one(item)

if __name__ == '__main__':
   download_many()

示例1进行的是顺序下载,下载30张图片的平均时间在60s左右(结果因实验环境不同而不同)。

这个代码能用但并不高效,怎么才能提高效率呢?

参考开篇的示意图,有三种方式:多进程、多线程和协程。下面我们一一说明:

我们都知道 Python 中存在 GIL(主要是Cpython),但 GIL 并不影响 IO 密集型任务,因此对于 IO 密集型任务而言,多线程更加适合(线程可以开100个,1000个而进程同时运行的数量受 CPU 核数的限制,开多了也没用)

不过,这并不妨碍我们通过实验来了解多进程。

多进程

示例2

from multiprocessing import Process
from get_photos import out_wrapper, download_one, user_conf

@out_wrapper
def download_many():
   zzr = user_conf()
   task_list = []
   for item in zzr:
       t = Process(target=download_one, args=(item,))
       t.start()
       task_list.append(t)
   [t.join() for t in task_list]  # 等待进程全部执行完毕(为了记录时间)

if __name__ == '__main__':
   download_many()

本示例重用了示例1的部分代码,我们只需关注使用多进程的这部分。

笔者测试了3次(使用的机器是双核超线程,即同时只能有4个下载任务在进行),输出分别是:19.5s、17.4s和18.6s。速度提升并不是很多,也证明了多进程不适合io密集型任务。

还有一种使用多进程的方法,那就是内置模块futures中的ProcessPoolExecutor。

示例3

from concurrent import futures
from get_photos import out_wrapper, download_one, user_conf

@out_wrapper
def download_many():
   zzr = user_conf()
   with futures.ProcessPoolExecutor(len(zzr)) as executor:
       res = executor.map(download_one, zzr)
   return len(list(res))

if __name__ == '__main__':
   download_many()

使用 ProcessPoolExecutor 代码简洁了不少,executor.map 和标准库中的 map用法类似。耗时和示例2相差无几。多进程就到这里,下面来体验一下多线程。

多线程

示例4

import threading
from get_photos import out_wrapper, download_one, user_conf

@out_wrapper
def download_many():
   zzr = user_conf()
   task_list = []
   for item in zzr:
       t = threading.Thread(target=download_one, args=(item,))
       t.start()
       task_list.append(t)
   [t.join() for t in task_list]

if __name__ == '__main__':
   download_many()

threading 和 multiprocessing 的语法基本一样,但是速度在9s左右,相较多进程提升了1倍。

下面的示例5和示例6中分别使用内置模块 futures.ThreadPoolExecutor 中的 map 和submit、as_completed

示例5

from concurrent import futures
from get_photos import out_wrapper, download_one, user_conf

@out_wrapper
def download_many():
   zzr = user_conf()
   with futures.ThreadPoolExecutor(len(zzr)) as executor:
       res = executor.map(download_one, zzr)
   return len(list(res))

if __name__ == '__main__':
   download_many()

示例6:

from concurrent import futures
from get_photos import out_wrapper, download_one, user_conf

@out_wrapper
def download_many():
    zzr = user_conf()
    with futures.ThreadPoolExecutor(len(zzr)) as executor:
        to_do = [executor.submit(download_one, item) for item in zzr]
        ret = [future.result() for future in futures.as_completed(to_do)]
    return ret

if __name__ == '__main__':
    download_many()

Executor.map 由于和内置的map用法相似所以更易于使用,它有个特性:返回结果的顺序与调用开始的顺序一致。不过,通常更可取的方式是,不管提交的顺序,只要有结果就获取。

为此,要把 Executor.submit 和 futures.as_completed结合起来使用。

最后到了协程,这里分别介绍 gevent 和 asyncio。

gevent

示例7

from gevent import monkey
monkey.patch_all()

import gevent
from get_photos import out_wrapper, download_one, user_conf

@out_wrapper
def download_many():
    zzr = user_conf()
    jobs = [gevent.spawn(download_one, item) for item in zzr]
    gevent.joinall(jobs)

if __name__ == '__main__':
    download_many()

asyncio

示例8

import uuid
import asyncio

import aiohttp
from get_photos import out_wrapper, user_conf, save_flag

async def download_one(url):
   async with aiohttp.ClientSession() as session:
       async with session.get(url) as resp:
           save_flag(await resp.read(), str(uuid.uuid4()))

@out_wrapper
def download_many():
   urls = user_conf()
   loop = asyncio.get_event_loop()
   to_do = [download_one(url) for url in urls]
   wait_coro = asyncio.wait(to_do)
   res, _ = loop.run_until_complete(wait_coro)
   loop.close()
   return len(res)

if __name__ == '__main__':
   download_many()

协程的耗时和多线程相差不多,区别在于协程是单线程。具体原理限于篇幅这里就不赘述了。

但是我们不得不说一下asyncio,asyncio是Python3.4加入标准库的,在3.5为其添加async和await关键字。或许对于上述多线程多进程的例子你稍加研习就能掌握,但是想要理解asyncio你不得不付出更多的时间和精力。

另外,使用线程写程序比较困难,因为调度程序任何时候都能中断线程。必须保留锁以保护程序,防止多步操作在执行的过程中中断,防止数据处于无效状态。

而协程默认会做好全方位保护,我们必须显式产出才能让程序的余下部分运行。对协程来说,无需保留锁,在多个线程之间同步操作,协程自身就会同步,因为在任意时刻只有一个协程运行。想交出控制权时,可以使用 yield 或 yield from(await) 把控制权交还调度程序。

总结

本篇文章主要是将python中并发相关的模块进行基本用法的介绍,全做抛砖引玉。而这背后相关的进程、线程、协程、阻塞io、非阻塞io、同步io、异步io、事件驱动等概念和asyncio的用法并未介绍。大家感兴趣的话可以自行google或者百度,也可以在下方留言,大家一起探讨。


(如果本文对你有帮助,可以对作者打赏)

 
Python之禅 更多文章 基于 Python 自建分布式高并发 RPC 服务 成为高薪人工智能人才,你要迈出这一步 人工智能入门书单(附PDF链接) 用Python来统计知识星球打卡作业 GitHub 找了个有钱的干爹,微软认了个优秀的干儿子
猜您喜欢 [收藏] 一文解析IO端到端流程和性能调优 【转】来自苹果的编程语言——Swift简介 谷歌人工智能又下一城!今日壕购Qwiklabs EJ系列16-18条 一个游戏